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1 Introduction 

 

Many countries do not announce an (implicit) inflation objective.  Prior to 25 January 

2012, for example, the US was the most prominent example of a country not having either an 

implicit or explicit quantitative inflation objective.  On that day, the Federal Reserve, in its 

first ever ‘longer-run goals and monetary policy strategy’ statement, said that an inflation rate 

of 2 per cent was most consistent over the longer run with its congressionally mandated goals 

of price stability and full employment. 

South Africa, the subject of this exercise, adopted inflation targeting (IT) as a formal 

framework for monetary policy in February 2000.  Starting in 2002, an inflation target was 

specified on the basis of an annual inflation rate of between 3 and 6 per cent.  This range has 

been largely maintained since then, although the target measure was re-defined several times.  

At the same time, the South African Reserve Bank (SARB) has refrained from announcing a 

mid-point.  In this regard, South Africa stands out amongst its international peers in using an 

inflation target range that exceeds a 1 percentage point band and not having an official point 

inflation target.  This set-up has advantages as well as disadvantages.  For the monetary 

policymaker, the lack of transparency regarding an inflation target mid-point provides greater 

flexibility in implementing monetary policy in an environment of volatile inflation.  But this 

flexibility comes at a cost, which is that it may undermine the central bank’s efforts to anchor 

medium- and long-term inflation expectations and may complicate market participants’ 

projections regarding the future path of the policy rate and the monetary policy stance more 

generally.  

The absence of official quantitative inflation objectives has not stopped economists 

from trying to estimate implicit or unobserved inflation objectives empirically.  Many 

estimates of the implicit inflation target rely on the assumption that it remains constant over 

the period under observation and analysis.  A prominent example is Clarida et al. (1998), who 

estimated the Federal Reserve’s policy reaction function over the period from 1979 to 1994 

using a model with a constant inflation target.  Their (fixed) estimate of this target for the US 

was equal to 4 per cent. 

But there are a number of reasons to believe that a central bank’s (implicit) inflation 

target may vary over time.  A time-varying parameter model and use of the Kalman filter 

(Kalman (1960, 1963) and Kalman and Bucy (1961)) allow us to relax this assumption and 

estimate a time-varying implicit inflation target.  One of the advantages of the Kalman filter 

is that no assumptions about whether or how the implicit target has varied are necessary.  

The aim of this exercise is to replicate the results in Klein (2012), who was interested in 

‘revealing’ the SARB’s ex post point inflation target and assess to what extent it has varied 

since the introduction of IT.
1
  The underlying methodology itself is based on Leigh (2008).

2
   

 

2 Specification and estimation of monetary policy reaction functions 

 

We first need to give some thought on how to ascertain an implicit inflation objective.  

There exists a large literature on monetary policy rules and on how monetary policy-makers 

have reacted to deviations of inflation and real activity from their – explicit or implicit – 

target levels.  This has become enshrined in the concept of a Taylor rule. 

                                                 
1
 Many thanks to Nir Klein for furnishing me with the original data used in his study.  

2
 Leigh (2008) estimated the Federal Reserve’s implicit inflation target using a time-varying parameter (state-

space) model and the Kalman filter. 

http://www.federalreserve.gov/monetarypolicy/files/FOMC_LongerRunGoals.pdf
http://www.imf.org/external/pubs/ft/wp/2012/wp12177.pdf
http://www.imf.org/external/pubs/ft/wp/2005/wp0577.pdf
http://www.imf.org/external/pubs/ft/wp/2005/wp0577.pdf
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While there are several ways of describing monetary policy, most new Keynesian (NK) 

macro models nowadays are closed using a Taylor rule, which is meant to represent the 

behaviour and preferences of the monetary policy maker.  It is worth pointing out that while 

no central bank has formally declared that it is following an interest rate rule such as the 

Taylor rule, the latter may still provide a parsimonious description of actual policy.  A typical 

(first-generation) Taylor rule looks as follows: 
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where it* is the target level of the short-term monetary policy instrument in time period t 

(here, the SARB’s repo rate), πt
e
 is expected inflation (which could be the inflation forecast), 

ty~  is the output gap (the percentage difference between actual and potential real GDP), r
n
 is 

the natural rate of interest (defined as the equilibrium real rate of return in the case of fully 

flexible prices) and π* is the inflation target or a desired inflation rate.
3
  The Taylor rule 

describes the behaviour and preferences of the monetary authority.  In the Taylor rule, the 

policy instrument – generally, but not always, a (short-term) interest rate – responds to 

economic variables with the aim of achieving a pre-specified policy objective, such as hitting 

an inflation, exchange-rate or money-supply target.  In the case of the Taylor rule given by 

equation (1), the central bank adjusts the nominal interest rate in response to deviations from 

the target values for inflation and output.
4
  All the parameters in the model are assumed to be 

positive.  

But most empirical studies of Taylor rule variants have found that the lagged nominal 

interest rate enters equation (1) and that it is strongly significant.  In practical terms, this 

equates to central bankers adjusting interest rates more cautiously than predicted by standard 

models.  Interest-rate smoothing was therefore introduced to make the dynamics of it more 

realistic.
5
  The (generalised) empirical Taylor rule in equation (1) thus becomes: 
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or, combining equations (2) and (3): 
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with β > 1 and 0 ≤ ρ < 1 denoting the degree of lagged dependence in the interest rate (i.e., 

interest-rate smoothing).  If ρ is high, the central bank will normally adjust the policy stance 

only gradually in response to economic developments or prospects.  

The restriction that β > 1 should hold has become enshrined as the ‘Taylor principle’.  

Under such parameter values, the Taylor rule will generally ensure a unique and deterministic 

rational expectations equilibrium, as shown by Woodford (2003, pages 252-61).  In other 

                                                 
3 In this exercise we shall not consider putting the exchange rate in the Taylor rule, as is done in Lubik and 

Schorfheide (2007). 
4
 An influential empirical paper in this respect is Clarida et al. (1998), while the theory can be found in Taylor 

(1999).  
5
 Note, however, that Woodford (2003, p. 280) has also provided a theoretical rationale for the inclusion of the 

lagged interest rate in equation (4). 
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words, this condition stabilises inflation: when the inflation forecast rises above target, the 

policymaker raises nominal interest rates enough to raise the target for the real policy rate.  

Variations in the Taylor rule are used to explain monetary policy across different regimes.   

For a number of reasons, the Taylor rule has become a cornerstone of modern monetary 

policy analysis.  To begin with, it is simple to understand and transparent.  Second, it reflects 

the move to ‘models without money’, in which the interest rate – rather than a (narrow) 

monetary aggregate – has become the main policy instrument. 

 

2.1 The data 

 

The EViews file implicit_target.wf1 contains data for South Africa, including the 

SARB’s repo rate as the dependent variable.  The analysis uses quarterly data over the period 

from 2001 Q1 to 2011 Q4.  Most of the data are available from the SARB’s website 

(www.resbank.co.za), including the Reuters inflation expectations survey data discussed 

below.  To open the EViews workfile from within EViews, choose File, Open, EViews 

Workfile…, select implicit_target.wf1 from its current location, update the default directory 

by checking the small box and click Open.  Alternatively, you can double-click on the 

workfile icon outside of EViews, which will open EViews automatically.   

There are a number of inherently unobservable time series that enter the model as 

independent variables on the right-hand side, and Klein either has to make (reasonable) 

assumptions about their values or derive some proxy measures indirectly.  In particular, the 

three unobservable variables that enter into equation (4) are: 

 

 the output gap; 

 the natural real rate of interest; and 

 inflation expectations 

 

2.1.1 Measuring the output gap 

 

The first unobservable variable is the output gap, ty~ .  The unobservable output gap 

(denoted gap100) over the period from 1980 Q1 to 2011 Q4 was computed from the natural 

logarithm of real GDP (lnrgdp), which has been de-trended using the Hodrick-Prescott 

(HP) filter.  This procedure has already been carried out for you, so there is no need to 

calculate the Hodrick-Prescott filtered series – as well as the output gap – again.  Just in case, 

these are the steps that are required for detrending the data with the Hodrick-Prescott filter.  

To smooth the series lnrgdp using the HP filter, double-click on it to open the series and 

choose Proc/Hodrick-Prescott Filter…, which opens up the Hodrick-Prescott Filter dialog 

box.  We can provide a name for both the smoothed and the cycle series.  EViews will 

suggest a name for the smoothed series, but I have chosen to call it hp_lnrgdp.  EViews 

has recognised the fact that the data are quarterly, so has specified a value of 1600 for the 

smoothing parameter, λ, automatically.  You may specify any other value for λ directly or use 

the frequency power rule of Ravn and Uhlig (2002).  Upon clicking OK, EViews will display 

a graph of the filtered series together with the original series.  We also note that the workfile 

now contains the additional series that we have created.  

Alternatively, the EViews command when using the command line is either: 

 
lnrgdp.hpf(1600) hp_lnrgdp @ gap 

 

http://www.resbank.co.za/
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when you want to extract both the smoothed and the cycle series (which will be given the 

name of hp_lnrgdp and gap in the workfile respectively ) or simply: 

 
lnrgdp.hpf(1600) hp_lnrgdp 

 

when you only want the smoothed series, after which you obviously need to define the output 

gap as the difference between the two series: 

 
gap = lnrgdp – hp_lnrgdp 

 

gap100, finally, is equal to 100 times the gap measure just calculated (gap100 = 

100*gap).  The advantage of the HP-filter is that it implicitly allows potential output 

growth to vary over time.  But it is worth pointing out that the Hodrick-Prescott filter in 

EViews is generally (erroneously) employed as a one-sided filter, meaning that it is used with 

historical data up to time t (today).  It is, however, the case that the HP-filter uses 

observations at time t + i, i > 0 to construct the current time point t.  Stopping the sample at 

the current date means that only current and past states, rather than past, current and future 

states influence the current observation.  In order to get around this problem, Klein (2012) 

followed what is now considered to be standard procedure and augmented his real GDP data 

for South Africa, which end in 2011 Q4, with forecast values from the IMF World Economic 

Outlook database, which take the total sample of the data out to 2017 Q4.  By having data 

beyond the end of the sample period of actual data, the endpoint problems associated with the 

HP-filter are avoided (Mise et al. (2005)).  

 

Figure 1: South African output gap (calculated using the Hodrick-Prescott filter) 
 

 
 

Figure 1 shows that the output gap measure has been quite volatile, fluctuating from -2 

per cent in 2009 Q3 to 3.2 per cent in 2008 Q2.  We can see that the estimated output gap was 

still negative at the end of the sample period in 2011 Q4.  Moreover, the deviation of the HP-

filter derived output gap based on the short sample (1980Q1 to 2011Q4, green line) from the 

derived output gap using the forecasted values out to 2017Q4 (the red line) becomes quite 

apparent in the second half of the sample.  In particular, the estimated output gap for 2011 Q4 
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http://www.imf.org/external/pubs/ft/wp/2012/wp12177.pdf
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is three times as large using the longer sample period (-0.6 per cent) than with the shorter 

sample period (-0.2 per cent).  

 

6.2 Measuring the natural real rate of interest 

 

The second unobservable variable in this exercise is the natural real rate of interest, r
n
.  

Klein assumed that the natural real rate of interest was constant over time and equal to its 

historical average over the sample period, which was about 3.25 per cent.
6
   

 

2.1.3 Measuring inflation expectations 

 

The final unobserved series is inflation expectations, πt
e
.  These data are based on a 

survey that Reuters undertakes on behalf of the SARB and which is available on the SARB’s 

website.  In particular, the exercise uses the Reuters Econometer Consensus survey of 

inflation expectations for four quarters ahead (denoted exp_reuters1_s in the workfile).  

As pointed out in the paper, the advantage of using inflation expectations instead of actual 

inflation is that it injects a forward-looking element into the Taylor estimation.   

 

2.2 Estimation of monetary policy reaction functions 

 

Having specified the monetary policy rules and either generated or obtained the 

required data, we can now turn our attention to estimating the Taylor rules we have defined 

above.  

 

2.2.1 Constant inflation target and natural real rate of interest 

 

As encapsulated in equation (1), the conventional approach to estimating Taylor rules 

assumes a constant inflation target, πt* = π*, and a constant natural real rate of interest, rt
n
 = 

r
n
.  Equation (1) can thus be rewritten as: 
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tt yγβπαi
~*   (5) 

 

where all the variables in equation (5) are observable and the composite intercept term, α = r
n
 

– (β – 1)π*, consist of both the constant inflation target and the constant natural rate of 

interest.  By estimating α and β and making an assumption regarding the value of r
n
, we can 

solve for the estimated constant inflation target, π*, using the following expression: 
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Table 1 presents the estimation results from an OLS regression of equation (5). 

 

                                                 
6
 Klein also points out that this level of the natural real rate of interest is broadly in line with the average 

estimated potential output growth rate during the period after the end of Apartheid in 1994.  The mean of 

dhp_lnrgdp_long (defined as dhp_lnrgdp_long = 400*d(hp_lnrgdp_long) is equal to 3.15 per 

cent over the period from 1994 Q1 to 2011 Q4. 
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Table 1: Estimation results of Taylor rule with constant inflation target and  

natural real rate of interest (2001 Q1 – 2011 Q4) 
 

Dependent Variable: RATE   

Method: Least Squares   

Sample (adjusted): 2001Q1 2011Q4  

Included observations: 44 after adjustments  
     

Variable Coefficient Std. Error t-Statistic Prob.   
     

C 1.688310 3.608356 0.467889 0.6423 

EXP_REUTERS1_S 1.306589 0.652047 2.003828 0.0517 

GAP100 0.722637 0.237455 3.043261 0.0041 
     

R-squared 0.265687     Mean dependent var 8.886364 

Adjusted R-squared 0.229867     S.D. dependent var 2.449166 

S.E. of regression 2.149320     Akaike info criterion 4.433926 

Sum squared resid 189.4026     Schwarz criterion 4.555575 

Log likelihood -94.54637     Hannan-Quinn criter. 4.479039 

F-statistic 7.417269     Durbin-Watson stat 0.144124 

Prob(F-statistic) 0.001781    
     

 

If we assume that r
n
 equals the average historical value of the real interest rate, equal to 

3.25 per cent, we can solve α = r
n
 – (β – 1)π* for π* = (r

n
 – α)/(β – 1) = (3.25 – 1.69)/(1.31 – 

1) = 5.09.  After estimation, we can get EViews to do the calculation for us.  In the command 

window, type: 

 
scalar pi_star = (3.25 - c(1))/(c(2)-1) 

 

Double-clicking on pi_star in the workfile shows that π* = 5.09, which happens to 

fall within the upper segment of the 3 to 6 percent band announced by the SARB.  

Now that we have estimates for r
n
 = 3.25 and π* = 5.09, we can go a step further and 

estimate equation (4) as well.  In this, we follow Leigh (2008), who suggested estimating the 

monetary policy reaction function using ordinary last squares (OLS) before moving to the 

time-varying parameter model and using maximum-likelihood (ML) estimation.  Mirroring 

the approach in Hamilton (1994), the benefit of doing so is that the parameters to be 

estimated by ML via the Kalman filter in the state-space representation can be initialised 

using the respective OLS estimates.  As such, ML estimation in Section 4.2 below will start 

from the values of the parameters estimated using OLS and the reaction function with a 

constant inflation target and a constant natural real rate of interest. 

The equation to be estimated is: 
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and the estimation results are given in Table 2. 

 

 

 

 

 

 

http://www.imf.org/external/pubs/ft/wp/2005/wp0577.pdf


 

ole.rummel@bankofengland.co.uk 8 ©Bank of England 

 

The Bank of England does not accept any liability for misleading or  

inaccurate information or omissions in the information provided. 

Table 2: Estimation results of Taylor rule with constant inflation target and  

natural real rate of interest (2001 Q1 – 2011 Q4) 
 

Dependent Variable: RATE   

Method: Least Squares   

Sample: 2001Q1 2011Q4   

Included observations: 44   

Convergence achieved after 3 iterations  

RATE =  (1 - C(1))*(3.25 + EXP_REUTERS1_S + (C(2) - 1) 

        *(EXP_REUTERS1_S - 5.09) + C(3)*GAP100) + C(1)*RATE(-1) 
     
 Coefficient Std. Error t-Statistic Prob.   
     

C(1) 0.858711 0.047437 18.10208 0.0000 

C(2) 1.592265 1.178960 1.350567 0.1842 

C(3) 2.549162 0.906819 2.811102 0.0075 
     

R-squared 0.918340     Mean dependent var 8.886364 

Adjusted R-squared 0.914357     S.D. dependent var 2.449166 

S.E. of regression 0.716746     Akaike info criterion 2.237555 

Sum squared resid 21.06271     Schwarz criterion 2.359204 

Log likelihood -46.22621     Hannan-Quinn criter. 2.282668 

Durbin-Watson stat 0.898824    
     

 

This is probably as far as we can push the least-squares estimation of the monetary 

policy reaction function given by equation (7).  In order to relax the assumption of both a 

constant inflation target and a constant natural real rate of interest, we need to turn to a time-

varying parameter model.  One of the most convenient approaches involves the state-space 

representation and the Kalman filter, to which we now turn. 

 

3 An overview of the general state-space model
7
 

 

The general form of a linear state-space model has quite a few components: 

unobservable states, observable data, shocks and system matrices.  Despite this, it can always 

be written as a system of two equations.  The first is a measurement equation (also known as 

the signal or observation equation): 

 

 yt = Ht βt + At Zt  + εt (8) 

 

where yt is a (n×1) vector of observable variables, Ht is a (n×m) matrix, Zt is a (n×k) matrix of 

exogenous variables, βt is a (m×1) vector of (possibly) unobservable state variables, At is a 

(k×n) matrix of parameters and εt is an observational error with E(εt) = 0 and var(εt) = Rt, 

where Rt is a known (n×n) matrix.  

The unobserved state variables βt are generated by a first-order Markov process defined 

by the transition (or state) equation: 

 

 βt = μt + Ft βt-1 + St vt (9) 

 

                                                 
7
 For more details, interested readers are directed to Harvey (1989), Chapter 13 in Hamilton (1994a), Hamilton 

(1994b) and Koopman et al. (1999).  
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where Ft is a (m×m) matrix, μt is a (m×1) vector, St is a (m×g) matrix and vt is a (g×1) vector 

of serially uncorrelated disturbances with E(vt) = 0 and var(vt) = Qt, where Qt is a known 

(g×g) matrix. 

The two disturbances εt and vt may be contemporaneously correlated, meaning that: 
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In most cases, however, we have that the matrix of covariances Gt = 0, i.e., cov(εt, vt) = 

0. 

The matrices Ht, Rt, Ft, St, Qt and Gt are known as the system matrices.  Most of the 

elements of these matrices will be fixed elements, mainly ones and zeros. 

The disturbance εt in the measurement equation (8) is an error-in-measurement.  The 

state-space form thus naturally lends itself to modelling systems with measurement error.  In 

this case, the transition equation defines the signal βt, which is unobservable and only 

measured with error (noise). 

The model given by equations (8) and (9) is broader than often needed since many of 

the components will be either absent or at least will not be time-varying.  For instance, the 

transition matrices Ft in equation (9) are usually time-invariant, as are the variances of the 

shocks Qt.  In addition, many models do not need to include any exogenous variables, Zt.   

As an aside, a useful concept in this area is the signal-to-noise ratio, λ, which is 

defined as λ = σv
2
/σε

2
.  The signal-to-noise ratio plays the key role in determining how 

observations should be weighted for prediction and signal extraction.  In a large sample, 

filtering is equivalent to a simple exponentially weighted moving average; the higher is λ, the 

more past observations are discounted.  When λ is zero, the level is constant and all 

observations have the same weight.  We will return to the signal-to-noise ratio below.  

There are two main benefits to representing a dynamic system in state-space form.  

First, the state-space form allows unobserved variables to be incorporate into, and estimated 

along with, the observable model.  Second, state-space models can be analysed using the 

powerful recursive Kalman (Bucy) filter outlined next.  

 

3.1 The Kalman filter 

 

The Kalman filter due to Kalman (1960, 1963) and Kalman and Bucy (1961) is an 

algorithm for generating minimum mean square error forecasts in a state-space model.  In 

particular, it is a recursive algorithm for sequentially updating the one-step ahead estimate of 

the state mean and variance given new information.  Since the state-space model is a very 

general formulation for linear models in which time-varying parameters, measurement errors 

and missing observations can all be dealt with very easily, the Kalman filter is a very useful 

tool.  As a by-product, if Gaussian errors are assumed, the filter allows the computation of 

the log-likelihood function of the state-space model.  This, in turn, allows the model 

parameters to be easily estimated by maximum-likelihood methods.  

 

4 Allowing for a time-varying inflation target: the state-space model 

 

This exercise relaxes the assumption of a constant inflation target.  Based upon 

equation (7), the time-varying parameter model to be estimated is given by: 
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 πt
*
 = πt-1

*
 + νt (12) 

 

 var(vt) = λ var(εt) (13) 

 

We note from equation (12) that the implicit inflation target, πt
*
, is assumed to follow a 

random walk.  Such a specification represents a flexible way of capturing possible time-

variation in the inflation target and is an established means of estimating other unobserved 

macroeconomic variables in the literature.  By estimating the Taylor rule given by equation 

(11) in a state-space model, we allow the coefficients of the Taylor rule components to be 

estimated alongside the inflation target.  As such, we relax the earlier assumption that the 

inflation target is constant over time by allowing it to vary according to a pre-determined 

random-walk process.  Equation (13) links the variances of the two error terms, such that the 

variability of the implicit target is linked to the variability of the policy rate.  The parameter λ 

thus becomes the signal-to-noise ratio.   

Variation in πt* is governed by the signal-to-noise ratio parameter, λ = var(vt)/var(εt).  If 

λ = 0, then the model collapses to the earlier specification with a constant inflation target.  In 

this case, there is no link between the movements of the policy rate and the inflation target.  

We should note that the contribution of this variance to overall variability is likely to be very 

small.  Consequently, the estimate of var(vt) is estimated very imprecisely and with 

downward bias.  In turn, this means that the maximum-likelihood (ML) estimate of var(vt) is 

biased toward zero.  This problem, referred to as the ‘pile-up problem’ by Stock (1994), 

implies that the estimate of the signal-to-noise ratio, λ = σv
2
/σε

2
, is also biased towards zero.

8
 

 

4.1 Creating and defining state-space models in EViews 

 

To specify and estimate a state-space model in EViews, you have to create a state-space 

object first.  Select Objects/New Object.../SSpace from the main toolbar or type sspace in 

the command window.  EViews will create a state-space object and open an empty state-

space specification window.  This window will allow you to use keywords and text to 

describe what EViews calls the signal equation (and everyone else the observation or 

measurement equations), state (or transition) equations, error structures, initial conditions 

and, if desired, parameter starting values for estimation.  I have also given a name to this 

specific state-space object, which is ss_equation7_prior. 

The SSpace object offers specification and estimation options for single and multiple 

dynamic equations in state-space form and navigates the user to the application of the built-in 

Kalman filter.  Exogenous variables can be included in the state-space equations and 

variances for all equations can be specified in terms of model parameters.  Model output is 

available in tabulated format or in graphs.  New series can be created from the model output 

and subsequently stored as new objects for further analysis.  These typically include one-step 

ahead and smoothed states and signals, filtered states and corresponding residuals and errors.  

The representation of the state-space model used for estimation as a SSpace object is as 

follows: 

 

                                                 
8
 Stock and Watson (1998) provide a procedure that overcomes this problem.  Note that we did not apply this 

procedure in our exercise (yet).  
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@param c(1) 0.86 c(2) 1.59 c(3) 2.55 c(4) 0.51 

 

@ename e1 

@ename v1 

 

@evar var(e1) = c(4) 

@evar var(v1) = (1/40)*c(4) 

 

@signal rate = (1 – c(1))*(3.25 + exp_reuters1_s + (c(3) – 

1)*(exp_reuters1_s – sv1) + c(2)*gap100) + c(1)*rate(-1) + e1 

 

@state sv1 = sv1(-1) + v1 

 

@mprior prior_pi 
 

The SSpace object in EViews that we have just created consists of several parts.  The 

first line informs EViews about the starting values of the parameters that are to be estimated.
9
  

Finding good starting values for coefficient estimates is important.  There are – at least – 

three ways of going about finding starting values.  The first is sheer luck.  It may turn out that 

our current starting values may yield convergence of the maximum-likelihood estimates.  

Incidentally, note that it is – as always with maximum-likelihood estimation – good practice 

to start from a number of starting values to see if they yield the same result (although this 

may be a dangerous – and frequently depressing – strategy!).  The second approach involves 

experimenting with different starting values until you come across numbers that result in 

sensible results (data-mining?).  Such a ‘trial-and-error’ approach can, of course, be time-

consuming (and may not always be crowned with success).  The final approach is to 

‘calibrate’ error variances and coefficient estimates (data-mining again?).  For the question at 

hand, for example, the starting values are based on the OLS estimates in Table 2.  The least 

obvious starting value is probably the one for c(4), which is based on the standard error of 

the regression in the bottom panel of Table 2.  This is denoted S.E. of regression by 

EViews.  Its value is equal to 0.716746 which, when squared, yields the starting value for the 

variance of e1, equal to 0.51.  

In the second part (the next two lines), the error terms for the measurement and state 

equation (e1 and v1) are named using the keyword @ename.  Contrary to other objects in 

EViews, error terms are not included in the equation of a state-space object unless they have 

been explicitly specified.  In this case, we include an error term for both the signal and the 

state equation. 

The third part (the following two lines) specifies the variances.  Error variances are 

preceded by the @evar keyword and may be constants or expressions in terms of unknown 

parameters.  In our model, the variances are expressed as functions of the unknown 

coefficient c(4).  We can see that the variance of the observation or measurement equation 

is given by c(4), while the variance of the transition equation is given by (1/40)*c(4) 

= 0.025*c(4).  This characterisation of the error variances of the transition equation 

mirrors their definition in equation (9), with λ = 0.025.  In other words, for the initial 

                                                 
9
 Evaluation of the Kalman filter, smoother and forecasting procedures all require that we provide the initial 

one-step ahead predicted values for the states β1|0 and variance matrix P1|0.  Unless stated otherwise, the starting 

values for the parameters are those specified in the coefficient vector c in the current EViews workfile.  It is 

therefore always advisable to specify appropriate starting values.  
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estimation, Klein fixed λ, the signal-to-noise ratio, at λ = 0.025 (= 1/40).  Using the @evar 

command, one can also specify covariances between error terms, for example, @evar 

cov(e1,v1) = 0.5.  Variances and/or covariances that have not been specified are 

assumed to be equal to zero.  If an error term is named, but there are no corresponding var 

= or @evar specifications, the missing variance or covariance specifications will be set to 

the default values of zero.  In many instances it is customary to express the variances as 

exponential functions of the unknown coefficients, where the exponential function is used to 

guarantee non-negative variance estimates (why?).   

In the fourth part (the next two lines), the measurement and state equations are defined.  

The @signal keyword specifies the measurement equation for the dependent variable and 

includes an unobserved state variable, denoted sv1, to represent the (time-varying) inflation 

target as well as a disturbance, e1, which corresponds to εt and has been declared by the 

@ename command.  The specification of the state equation should be obvious when we 

compare it to equation (11).  If there is no error or error variance, the signal equation is 

assumed to be deterministic.  Signal equations may include expressions of the dependent 

variable, but no current values or leads of the signal variables.  Nonlinearities in the states 

and leads or lags of states are also not allowed.  Note that the @signal keyword may be 

dropped.  Finally, the 3.25 in the measurement equation corresponds to the constant natural 

real rate of interest.   

The @state equation defines the random walk for the unobserved state variable, πt
*
, 

just as described in equation (12)  State equations should not include expressions of 

unobserved components (like log(sv1)) nor lags or leads for signal equation dependent 

variables, but may contain (possibly non-linear) transformations of exogenous variables.  

They should be linear in the one-period lag of the states, where the one-period lag restriction 

is easily circumvented by including new state variables for higher-order lags.  If there is no 

error or error variance, the state equation is assumed to be deterministic.  

Error terms should necessarily be named before specifying the state and observation 

equation.  But one can simply add the variance structure to define an error term, like in 

@state sv1 = sv1(-1) + [var = (1/40)*c(4)].  This is called the error 

variance specification, whereas the form shown above is the named error approach.
10

  In 

other words, the state-space object could be equally well re-written as follows. 

 
@param c(1) 0.86 c(2) 1.59 c(3) 2.55 c(4) 0.51 

 

@signal rate = (1 – c(1))*(3.25 + exp_reuters1_s + (c(3) – 

1)*(exp_reuters1_s – sv1) + c(2)*gap100) + c(1)*rate(-1) + 

[var=c(4)] 

 

@state sv1 = sv1(-1) + [var=(1/40)*c(4)] 

 

@mprior prior_pi 

 

                                                 
10

 The main drawback of the error variance specification is that it does not permit correlation between errors in 

different equations.  By default, EViews assumes that the covariance between different errors in different 

equations is zero.  The ‘named error’ approach is useful when we require a more flexible variance-covariance 

structure.  
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By default, EViews will handle initial conditions for us.  We may, however have prior 

information about the values of β1|0 and P1|0 (cf. Footnote 9).  In this case, we can create a 

vector or matrix that contains the appropriate values, and use the @mprior or @vprior 

keywords to perform the assignment for the initial mean and variance values respectively.  

The final command therefore tells EViews that I have defined a (1×1) vector prior_pi 

which contains an initial value for πt*, equal to 5.09.  In this exercise, we only have one 

unobserved state variable, sv1, representing the time-varying inflation target, so there is 

only one initial value to be specified.  Note that in models with more than one unobserved 

state variable, each state variable will have to be initialised.   

 

4.2 Estimation results 

 

The first part of the analysis will proceed under the assumption that the natural real rate 

is constant at 3.25 per cent.  Later sections of this exercise will relax this assumption and 

investigate the robustness of the results to this assumption.  The estimation results, which are 

very close to those in Table 1 in Klein (2012, p. 7) are given in Table 3 below 

 

Table 3: Estimated response function of the  

South African Reserve Bank (2001 Q1 – 2011 Q4) 
 

Sspace: SS_EQUATION7_PRIOR   

Method: Maximum likelihood (Marquardt)  

Sample: 2001Q1 2011Q4   

Included observations: 44   

User prior mean: PRIOR_PI   

Convergence achieved after 25 iterations  
     
 Coefficient Std. Error z-Statistic Prob.   
     

C(1) 0.800210 0.071914 11.12738 0.0000 

C(2) 1.937002 0.667388 2.902361 0.0037 

C(3) 3.921966 1.608288 2.438596 0.0147 

C(4) 0.383625 0.092371 4.153070 0.0000 
     
 Final State Root MSE z-Statistic Prob.   
     

SV1 6.264029 0.329956 18.98446 0.0000 
     

Log likelihood -50.57794      Akaike info criterion 2.480815 

Parameters 4      Schwarz criterion 2.643014 

Diffuse priors 1      Hannan-Quinn criter. 2.540967 
     

 

The bulk of the output from state-space estimation in EViews should look familiar from 

other EViews estimation objects.  The information at the top describes the basics of the 

estimation: the name of the SSpace object (ss_equation7_prior), estimation method 

(maximum likelihood using the Marquardt optimisation algorithm), the sample (2001 Q1 to 

2011 Q4), the number of included observations in the sample (44), the prior mean 

(prior_pi), convergence information (EViews needed 25 iterations to achieve 

convergence towards a solution) and the coefficient estimates.   

In terms of the estimation results, the estimated equation is consistent with common 

beliefs about the Taylor rule.  All the estimated coefficients are positive (and statistically 

significant).  The parameter β in equation (7), equivalent to c(3) in Table 3, is positive and 

significantly greater than 1, indicating not only that the Taylor principle holds, but also that 

http://www.imf.org/external/pubs/ft/wp/2012/wp12177.pdf
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the SARB has been quite aggressive in responding to deviations of inflation expectations 

from its target rate over the sample period.  The parameter γ in equation (7), equivalent to 

c(2) in Table 3, is also positive and significantly different from zero, suggesting that the 

SARB also considers output gap stabilisation as a secondary objective of monetary policy.  

The parameter δ in equation (7), which measures the degree of interest-rate smoothing, is 

equal to 0.800, indicating a relatively high degree of interest rate smoothing.  Finally, the 

coefficient c(4) is the variance of the error term for the measurements and state equations.  

We therefore estimate that var(εt) = σε
2
 = 0.384.  

But Klein cautions that the estimation results should be treated with some care in light 

of the uncertainties regarding the ‘true’ values of the output gap and the natural interest rate. 

The bottom part of the output view reports the maximised log-likelihood value, the 

number of estimated parameters and the associated information criteria.  

On the other hand, some parts of the output are new.  In particular, EViews displays the 

final one-step ahead values of the state vector, βT+1|T, equal to 6.264, and the corresponding 

root mean square error values (square roots of the diagonal elements of PT+1|T), equal to 

0.330.  In case you are interested in the entire path of the state (signal) vector and covariance 

matrix, EViews provides a variety of views and procedures for examining the state (signal) 

results in greater detail.  

After estimation, EViews allows you to create new series based on the results of the 

estimation process.  These can be generated using the appropriate keywords (in the command 

window) or they can be selected from the menu screens.  As such, you generate the estimated 

state (and signal) series by clicking on Proc at the top of the SSpace object box and then 

selecting either Make Signal Series or Make State Series.   

 

  
 

In our case, we would like to plot the filtered state series, sv1.  For plotting, we click 

on View at the top of the SSpace object box and select State Views and Graph State 

Series… and Filtered: State estimates.  The estimated implicit inflation target is given in 

Figure 2 below.  I have added the upper and lower bands of the SARB’s inflation range 

manually for comparison.  This is done by right-clicking on the chart and selecting Add lines 

& shading… once for the upper horizontal (dashed) line at 6 and again for the lower 

horizontal (dashed) line at 3.  

 

 

 

 



 

ole.rummel@bankofengland.co.uk 15 ©Bank of England 

 

The Bank of England does not accept any liability for misleading or  

inaccurate information or omissions in the information provided. 

Figure 2: Estimated implicit inflation target from the baseline model  

(2001 Q1 – 2011 Q4) 
 

 
 

We can see that while the SARB’s target range for inflation is defined as 3 to 6 per 

cent, the estimated implicit inflation target has generally been in the upper portion of that 

range since the introduction of IT.  The results indicate that the implicit inflation target, at 

around 6 per cent, was high in 2001 and 2002, when the South African rand came under 

pressure on foreign-exchange markets.  Still, the estimate moderated substantially over the 

course of 2003, falling to some 4.5 per cent.  Over the period from 2004 to 2007, the implicit 

inflation target was more or less stable at around 5 per cent, but has been increasing since 

2007 Q4 to around 5.5 per cent in 2008 Q3.  With the onset of the financial crisis and the 

substantial monetary easing in late-2008 and early-2009, the estimated target recorded 

another increase, hovering close to – and maybe even above – the upper limit of the inflation 

target range at 6 per cent.  This finding needs to be seen in light of the substantial variability 

of the output gap over the same period (Figure 1).   

We save the filtered state estimate and its standard error by going to Proc/Make State 

Series… and then selecting, in turn, Filtered: State estimates and Filtered: State estimate 

SE and giving it an appropriate name (in my case, I have called them sv1_base and 

sv1_base_se).  

A little manipulation of the underlying data as well as the chart options in EViews 

allows us to recover Figure 4 in Klein (2012, p. 7), reproduced as Figure 3 below.  The band 

indicates the point estimates plus and minus one standard error.  Before we can go and graph 

the series as an Area Band, we have to do a few more manual operations.  In particular, we 

manually create the upper and lower confidence bands as: 

 
sv1_base_upper = sv1_base + sv1_base_se 

 

and: 

 
sv1_base_lower = sv1_base - sv1_base_se 
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After we have created the two extra series, we open sv1_base_upper, 

sv1_base_lower and sv1_base in that order as a Group.  You may now display an 

area band graph for the EViews Group object containing our three time series.  EViews will 

construct bands from successive pairs of series in the group.  If there is an odd number of 

series in the group, the final series will, by default, be plotted as a line.  Select View/Graph... 

from the group menu, and then choose Area Band in the Specific listbox.  The Fill Areas 

and Lines & Symbols dialogs under the Graph Elements group may be used to modify the 

characteristics of the lines and shades in your graph.  After setting the appropriate options, 

the results should be the chart shown in Figure 3.   

 

Figure 3: Estimated implicit inflation target from the baseline model  

(2001 Q1 – 2011 Q4) 
 

 
 

A Wald test rejects the null hypothesis that the inflation target is constant over time.  

This corresponds to the null hypothesis of H0: var(vt) = 0, which can be evaluated by testing 

whether 0.025*c(4) = 0.  Select View/Wald Coefficient Tests… and enter c(4) = 0 in 

the dialog box (why?).  The results of the test are shown in Table 4. 

 

Table 4: Wald coefficient restriction test 
 

Wald Test:   

SSpace: SS_EQUATION7_PRIOR  
    

Test Statistic Value df Probability 
    

Chi-square  17.24799  1  0.0000 
    

Null Hypothesis: C(4)=0  

Null Hypothesis Summary:  
    

Normalized Restriction (= 0) Value Std. Err. 
    

C(4)  0.383625  0.092371 
    

Restrictions are linear in coefficients. 
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A Wald test of the restriction that the target is constant over time yields a χ
2
-statistic of 

17.248 (p-value: 0.000), meaning that we can reject the null hypothesis that var(vt) = 0. 

 

5 Assessing the sensitivity of the estimation results to pre-determined parameters 

 

In our baseline estimations so far, three elements were pre-determined:  

 

 the intercept of the Taylor rule equation, which is the assumed natural real rate of 

interest; 

 the signal-to-noise ratio, λ, which determines the variability of the implicit 

inflation target relative to the variability of the policy rate; and 

 the statistical process of the implicit inflation target, which was assumed to 

follow a random walk process 

 

This section evaluates the degree to which deviations from these three assumptions 

affect the trajectory of the estimated implicit inflation target, starting with the statistical 

process of the implicit inflation target 

 

5.1 Does the implicit inflation target follow a random walk or is it a stationary 

process? 

 

At the moment, the statistical process of the implicit inflation target is assumed to 

follow a random-walk process, i.e., the coefficient on π*t-1 in equation (8) is set to 1.  But we 

can relax this assumption by reformulating equation (8) as: 

 

 πt* = ϕπ*t-1 + vt (14) 

 

We can re-estimate the state-space model to assess whether the implicit inflation target 

follows a random walk or a stationary process and to what extent a change of this 

specification affects the trajectory of the implicit inflation target.  The updated state-space 

model object is given by ss_equation14, which shows one change compared to the 

baseline specification.  The state equation for sv1 now includes an additional parameter 

called c(5) (with an initial value of 0.90): 

 
@state sv1 = c(5)*sv1(-1) + v1 

 

The results of this new state-space model are given in Table 5, which also includes the 

baseline results for comparison.   
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Table 5: Estimated response function of the SARB with a  

relaxation of the random-walk assumption (2001 Q1 – 2011 Q4) 
 

 Baseline Alternative 

Parameter πt* = π*t-1 + vt πt* = ϕπ*t-1 + vt 

δ 0.800 
(0.072) 

0.846 
(0.079) 

γ 1.937 
(0.667) 

2.542 
(1.280) 

β 3.922 
(1.608) 

3.132 

(1.790) 

var(εt) 0.384 
(0.092) 

0.393 
(0.096) 

var(vt) 0.0096 0.0098 

λ 0.025 0.025 

ϕ  0.999 
(0.003) 

Notes: Numbers in parentheses indicate standard errors.  Numbers in the Baseline 

column replicate the results from Table 3.  Coefficients that are statistically 

significant at the 5 per cent level of significance are denoted in boldface.  

 

We find, on the basis of a Wald coefficient test, that the implicit inflation target does 

follow a random walk process, as the null hypothesis that ϕ (c(5)) = 1 cannot be rejected (p-

value = 0.855).  In contrast to Klein, however, I find that the rest of the estimated parameters 

change compared to the baseline specification.  Consequently, the trajectory of the estimated 

implicit target (sv1_no_rw) is not very close to the baseline trajectory (Figure 4), 

especially at the beginning of the sample period. 

 

Figure 4: Estimated implicit inflation target from the baseline and the random-walk 

models (2001 Q1 – 2011 Q4) 
 

 
 

5.2 A different (constant) natural real rate of interest 

 

To assess the sensitivity of the baseline results to the assumption of a constant natural 

real rate of interest equal to 3.25 per cent, which is the average real rate of interest in the 

sample, Klein considers two experiments.  In the first, he considers a somewhat higher 
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(constant) natural real rate of interest equal to 4 per cent (75 basis points above the baseline 

real rate), while in the second he sets the (constant) natural real rate of interest equal to 2.5 

per cent (75 basis points below the real rate). 

 

Table 6: Estimated response function for the SARB with  

different natural real rates of interest (2001 Q1 – 2011 Q4) 
 

 Baseline Higher natural real rate 

of interest 

Lower natural real rate 

of interest 

Parameter r
n
 = 3.25 r

n
 = 4.00 r

n
 = 2.50 

δ 0.800 
(0.072) 

0.800 
(0.072) 

0.800 
(0.072) 

γ 1.937 
(0.667) 

1.937 
(0.667) 

1.937 
(0.667) 

β 3.922 
(1.608) 

3.922 
(1.608) 

3.922 
(1.608) 

var(εt) 0.384 
(0.092) 

0.384 
(0.092) 

0.384 
(0.092) 

var(vt) 0.0096 0.0096 0.0096 

Notes: Numbers in parentheses indicate standard errors.  Numbers in the Baseline column replicate the results 

from Table 3.  Coefficients that are statistically significant at the 5 per cent level of significance are denoted in 

boldface. 

 

We find that even though the impact of different natural real rates of interest is 

insignificant in terms of the estimation results in Table 6 (up to three significant figures, at 

least), the impact on the estimated implicit inflation targets is still quite visible (Figure 5). 

 

Figure 5: Estimated implicit inflation target with different levels of the natural real rate 

(2001 Q1 – 2011 Q4) 
 

 
 

5.3 Alternative signal-to-noise ratios 

 

The final sensitivity analysis evaluates different signal-to-noise ratios.  In general, a 

higher (lower) λ implies that the implicit inflation target could change more (less) rapidly 

over the sample period.  In addition to the baseline value of λ = 0.025, Klein considers two 

alternative values: λ = 0.0125 and λ = 0.2.  The results in Table 7 allow us to investigate the 
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relative weights given to inflation and output stabilisation in the SARB’s estimated reaction 

function.  Both alternative models lead to a lower relative weight on inflation, as illustrated 

by the lower ratio of β compared to γ.  Moreover, a higher λ is associated with a lower degree 

of interest-rate smoothing.  

 

Table 7: Estimated response function for the SARB with  

constant natural real rate and different signal-to-noise ratios (2001 Q1 – 2011 Q4) 
 

 Baseline   

Parameter λ = 0.025 λ = 0.0125 λ = 0. 2 

δ 0.800 
(0.072) 

0.833 
(0.078) 

0.742 
(0.062) 

γ 1.937 
(0.667) 

2.192 
(0.942) 

1.719 
(0.405) 

β 3.922 
(1.608) 

3.899 
(1.926) 

3.352 
(0.991) 

var(εt) 0.384 
(0.092) 

0.419 
(0.100) 

0.277 
(0.072) 

var(vt) 0.0096 0.0052 0.0554 

β/γ 2.1 1.8 1.9 

Notes: Numbers in parentheses indicate standard errors.  Numbers in the Baseline column replicate the results 

from Table 3.  Coefficients that are statistically significant at the 5 per cent level of significance are denoted in 

boldface. 

 

The new implied trajectories for the implicit inflation target for the three signal-to-noise 

ratios are shown in Figure 6 below.   

 

Figure 6: Estimated implicit inflation target with alternative signal-to-noise ratios  

(2001 Q1 – 2011 Q4) 
 

 
 

We can see that a change in the signal-to-noise ratio has a non-linear impact on the 

estimated trajectories.  In particular, we can see that a higher λ is associated with a greater 

variability of the estimated target: the estimated target is below the baseline at the beginning 

of the sample, but above it at the end.  In numbers, the high signal-to-noise ratio of λ = 0.2 
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results in the implicit inflation target increasing to a peak of 7 per cent in 2009 Q3 before 

moderating to around 6.6 per cent thereafter.  The implicit inflation target is much more 

stable under the low signal-to-noise ratio of λ = 0.0125.  Even so, there is a discernible 

upward drift in the estimated target towards the end of the sample period.  Overall, the 

average estimated inflation target over the entire sample period from 2001 Q1 to 2011 Q4 is 

significantly lower under the low signal-to-noise ratio (6 per cent) than under the high signal-

to-noise ratio (6.5 per cent).   

 

5.4 Investigating a time-varying natural real rate of interest 

 

The robustness analysis in Sections 5.1 through 5.3 assumed that the natural real rate of 

interest was fixed at different, albeit constant, levels over time.  This assumption might be 

overly restrictive, particularly in light of the possibility that the natural real rate of interest has 

declined substantially since the outbreak of the global financial crisis.  In general, we assume 

that the natural real rate of interest is closely linked to the potential growth rate of the 

economy (Laubach and Williams (2003)).   

Klein therefore undertakes two further policy experiments.  In the first, which he calls 

partial variation over time, the natural real rate of interest undergoes a one-off step-change 

downwards after 2008 Q4.  He retains the value of 3.25 per cent for the natural real rate of 

interest from the start of the period until 2008 Q4, but then lowers the natural real rate to 2 

per cent starting in 2009 Q1.  This new natural real rate of interest variable is denoted 

realrate1 in the workfile.   

In a second experiment, he follows Laubach and Williams (2003) and estimates a state-

space system in which the natural real rate of interest is linked to the estimated potential GDP 

growth.  This model is referred to as full variation over time.  He goes on to say that ‘Under 

this approach the natural real rate depends on the trend growth of output, and is subjected to 

random disturbances (p. 11)’.   

If I understand the model set-up correctly, the state-space model specification in 

EViews is as follows: 

 
@param c(1) 0.86 c(2) 1.59 c(3) 2.55 c(4) 0.51 c(5) 0.5 

 

@ename e1 

@ename v1 

@ename v2 

 

@evar var(e1) = c(4) 

@evar var(v1) = (1/40)*c(4) 

@evar var(v2) = c(5) 

 

@signal rate = c(1)*rate(-1) + (1 - c(1))*(c(2)*gap100 + (c(3) 

- 1)*(exp_reuters1_s - sv1) + sv2 + exp_reuters1_s) + e1 

 

@state sv1 = sv1(-1) + v1 

@state sv2 = dhp_lnrgdp_long + v2 

 

@mprior prior2 
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There are a few changes to the basic state-space model, which has been named 

ss_equation7_full.  To begin with, I have made the natural real rate of interest in the 

signal equation time-varying by turning it into a state variable called sv2.  As we now have a 

new state variable, we need to create a transition equation associated with it.  Following 

Klein’s description of the new dynamics of the natural real rate, the state equation is given 

by: 

 
@state sv2 = dhp_lnrgdp_long + v2 

 

such that the time-varying natural real rate of interest depends on the growth rate in potential 

output, dhp_lnrgdp_long, and a random disturbance term, whose error has a variance 

equal to c(5).  To account for the two state variables in the system, prior2 is now a (2×1) 

vector with values given by 5.09 and 3.25. 

One potential drawback with this set-up is that we relate the natural real rate of interest 

with the growth in potential output, which is very smooth.  Indeed, the resulting estimated 

time-varying natural real rate over the period from 2001 to 2011 is probably too smooth to 

represent the natural real rate of interest (Figure 7).  Other functional forms are, of course, 

possible.   

 

Figure 7: Estimated time-varying natural real rate of interest (2001 Q1 – 2011 Q4) 
 

  
 

In comparison with Klein’s Figure 7, the above chart is far too smooth, although the 

general trend is (kind of) the same.  Moreover, the interest rate cycle peaks too soon:  Klein 

finds that the natural real rate of interest increased quite sharply during the upturn in 

economic activity in the period from 2006 to 2008, and then declined significantly with the 

outbreak of the global financial crisis.  In contrast, the natural real rate of interest in Figure 7 

peaks as early as 2005.  On a positive note, though, the magnitudes are comparable, in the 

sense that Klein’s estimated natural real rate of interest series peaks at 4.5 per cent before 

falling to a low of 2 per cent.  

For completeness, Figure 8 shows the three different implicit inflation targets. 
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Figure 8: Estimated implicit inflation target with time-varying natural real rate of 

interest (2001 Q1 – 2011 Q4) 
 

 
 

The estimation results of these two experiments, as well as the baseline results, can be 

found in Table 8 below.  

 

Table 8: Estimated response function for the SARB with  

time-varying natural real rate (2001 Q1 – 2011 Q4) 
 

 Baseline   

Parameter r
n
 = 3.25 Partial variation Full variation 

δ 0.800 
(0.072) 

0.774 
(0.059) 

0.854 
(0.070) 

γ 1.937 
(0.667) 

1.581 
(0.494) 

1.765 

(1.056) 

β 3.922 
(1.608) 

3.441 
(1.118) 

2.612 

(1.645) 

var(εt) 0.384 
(0.092) 

0.358 
(0.087) 

0.501 

(5.051) 

var(vt) 0.0096 0.0089 0.0125 

β/λ 2.0 2.2 1.5 

Notes: Numbers in parentheses indicate standard errors.  Numbers in the Baseline column replicate the results 

from Table 3.  Coefficients that are statistically significant at the 5 per cent level of significance are denoted in 

boldface. 

 

5.5 Forecasting exercise: actual versus predicted monetary policy rate 

 

In order to complement the battery of robustness tests, Klein performs a dynamic 

forecast for the monetary policy rate to assess the extent to which the estimated state-space 

models describe the SARB’s actual reaction function.  In particular, he uses the state-space 

specifications of the baseline with a constant natural real rate of interest and the partial- as 

well as the full-variation specifications of the natural real rate of interest.  The estimated 

state-space models are used to produce forecasts from 2005 Q1 until the end of the sample 

period.
11

  This should be long enough to allow for sufficient cycles in the policy rate. 

                                                 
11

 It appears that Klein uses the models estimated up to 2011 Q4 to produce forecasts starting in 2005 Q1.  
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Forecasting using state-space models is done by clicking on the Forecast button.  This 

opens up the Forecast dialog box, which is reproduced below.   

 

 
 

Note that what we are forecasting is not the state variable, but the signal, i.e., the 

actually observed time series of the base rate.  I have given my forecast an appropriate name 

(*_base_forecast), such that the resulting EViews series in the workfile will be called 

rate_base_forecast.  We can leave the other settings at EViews’ defaults.  Following 

Klein, we are performing a dynamic forecast over the period from 2005 Q1 to 2011 Q4, 

although the model is estimated on data that includes the forecast period.  We then repeat the 

forecasting exercise using the state-space model allowing for partial variation of the natural 

real rate of interest as well as the full variation version of the state-space model.  The actual 

monetary policy rate of the SARB as well as the predicted policy rates are shown in Figure 9.  

 

Figure 9: Actual and predicted policy rates (2001 Q1 – 2011 Q4) 
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As discussed in Klein, the results show that the fitted rates follows the actual monetary 

policy rate quite well, even ‘predicting’ both the monetary tightening of 2006 to 2008 and the 

monetary relaxation after 2009.  I should reiterate that this is not forecasting in the traditional 

sense and that this exercise is not intended for forecast use.  At the same time, we should not 

that true out-of-sample forecasting with estimated state-space models can be very easily 

done.  

 

6 Summary 

 

This exercise illustrated an approach to estimating the implicit inflation target of a 

central bank and how it varies over time using state-space models and the Kalman filter.  In 

particular, we estimated a simple Taylor rule in a state-space representation, where the 

coefficients of the Taylor rule components were estimated alongside the time-varying 

inflation target.  
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