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DSGE models

• First things first...

• D - Dynamic

• S - Stochastic

• G - General

• E - Equilibrium
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Goals for these sessions

• By the end of these two sessions you should:

• Be able to solve simple heterogenous agent DSGE
models

• Have an understanding of some of the key underlying
concepts

• Complete vs incomplete markets
• Heterogeneous vs representative agent models
• Links between utility specifications and choice axioms
• Consumption-Euler equation

• Tomorrow: basic properties of the NK model
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The basic approach

• Clarify costs and benefits of actions
• Done formally in an optimisation problem

• Standard (and familiar) example: how does a household
divide income between consumption and saving

• History provides examples of interesting solutions
(expectations matter!)...

• History suggests that accounting for how people respond
to changes can be crucial for policymakers!
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A static deterministic general equilibrium model

• Initially, we shall keep things simple and solve a model
which is

• Static: i.e. there will be only one time-period, t ≡ 1
• Deterministic: i.e. everything will be known at the time of making the

decision
• General Equilibrium: i.e. no agent will be able to improve their situation by

unilaterally changing their behaviour

• To make things a little bit harder, we will consider a multiple
good, heterogeneous agent model

• I.e. there will be many goods traded and we will allow for differences
between consumers

• Assumption:
• Every household aims to attain the highest possible utility
• Jargon: agent = consumer = household
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Utility

• We will denote consumer i ’s consumption of good n by c i
n

where i ∈ I and n ∈ {0, . . . ,N}
• Need to be specific about agent i ’s utility function
• We have many different functional forms to choose from

• linear: u(c i
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• CRRA: u(c i
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• More broadly, we can have
• separable utility: u(c i

0, c
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• non-separable utility: any utility function which is not separable

• E.g. u(c i
0, c

i
1) = c i

0 · c i
1

• Key distinction between variables and parameters
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Notes on utility

• The setup so far may seem terribly ad hoc:
• No independent evidence that utility exists
• No way of measuring utility
• Different choices of utility functions could potentially lead to very different

conclusions

• These objections were forcefully raised by Walras
(1834-1910) and Pareto (1848-1923)
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Notes on utility (ctd)

• Samuelson’s (1938) “Note on the pure theory of
consumer’s behaviour” provided some respite

• Samuelson was
• suspicious of the ad hoc and unobserved notion of utility
• interested in the simplest model of choice capable of making positive

predictions about consumer decisions

• The answer he provided (sharpened by Houthakker
(1950)) became known as GARP (Generalised Axiom of
Revealed Preference)

• A consumer is said to satisfy GARP if having chosen B
when C was available, and having chosen A when B was
available, she cannot strictly prefer C to A
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Notes on utility (ctd)

• Afriat (1967) proved a remarkable result linking GARP to
expected utility:

• Any GARP consumer behaves exactly as if she had a continuous, concave
and strongly monotone utility function underlying her decisions

• Von Neumann and Morgenstern (1944) focussed on
probabilistic lotteries and showed that under the continuity
and independence axioms

• A GARP consumer behaves as if she was evaluating lotteries based on
expected utilities
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Notes on utility - A summary

• Positive spin: the expected utility formulation, with a
continuous, concave and strongly monotone period utility
function may not be as ad hoc as it initially seemed

• Negative spin: since utility is unobservable, we should be
cautious about implications which don’t follow from
continuity, concavity or strong monotonicity

• Behavioural evidence on continuity and independence axioms (crucial in
the dynamic context) is at best mixed!



Centre for Central Banking Studies Modelling and Forecasting 11

The optimisation problem

• Consumer i ∈ I decides on consumption of N + 1 goods to
maximise utility

max
c i

0,c
i
1,...,c

i
N

{
γ0u

(
c i

0

)
+ γ1u

(
c i

1

)
+ . . .+ γNu

(
c i

N

)}
s.t . :

∑
n∈{0,1,...,N}

pnc i
n =

∑
n∈{0,1,...,N}

pny i
n

• c i
n denotes agents i ’s consumption of good n

• y i
n denotes agent i ’s endowment of good n

• pn denotes the price of good n

• Key questions:
• What does the consumer know? What does he need to solve for?
• Are the consumers different? In what way?

• Assumptions
• There is a market for each good n (markets are complete)
• To fix attention / simplify, we shall set u (·) = log (·)
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Solving the heterogenous agent model

• The assumption of log-utility implies that the problem
solved by consumer i is

max
c i

0,c
i
1,...,c

i
N

{
γ0 log

(
c i

0

)
+ γ1 log

(
c i

1

)
+ . . .+ γN log

(
c i

N

)}
s.t . :

∑
n∈{0,1,...,N}

pnc i
n =

∑
n∈{0,1,...,N}

pny i
n

• To solve the model we shall:
1 Characterise how much of good n agent i would like to consume

conditional on prices p1, p2, . . . , pn

• These solutions will define the excess demand / supply
schedules

2 Find prices p1, p2, . . . , pn such that the resulting quantity demanded by all
consumers equals the quantity supplied (this is the GE part)

3 Plugging p1, p2, . . . , pn back into the formulae derived in 1. will give us the
actual amounts of each good consumed in equilibrium
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Individual excess demand / supply schedules

• To solve the model we first characterise the consumption
level which each agent would choose conditional on prices
p1,p2, . . . ,pn

• How can we do that?

• There are several techniques for dealing with maximisation
problems of this type; we will use Lagrange multipliers
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Lagrange multipliers: the finite case
• Setup: maximise a function U(X ,Y ) with respect to X and

Y , subject to the constraint PX + QY = B
• The Lagrange multiplier approach to finding a solution

1 Define the Lagrangian L(X ,Y , λ) as

L(X ,Y , λ) ≡ U(X ,Y )− λ(PX + QY − B)

where λ is called a Lagrange multiplier
2 Differentiate L(X ,Y , λ) w.r.t. X ,Y and λ and equate to 0

∂L
∂X

=
∂U
∂X
− λP = 0 ⇔ Lx =Ux − λP = 0

∂L
∂Y

=
∂U
∂Y
− λQ = 0 ⇔ Ly =Uy − λQ = 0

∂L
∂λ

=PX + QY − B = 0 ⇔ Lλ =PX + QY − B = 0

These equations are called the first-order conditions (FOCs)
3 Use the equations to solve for X and Y . For us, they imply

Ux

Uy
=

P
Q
⇔ Ux Q − Uy P = 0
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Lagrange multipliers: a simple example

• To ensure that we understand how the technique of
Lagrange multipliers works, let’s apply it to a specific
example:

• Find the maximum of U(X ,Y ) = XY + 2X subject to the constraint
4X + 2 Y = 60

• Solution: {X ,Y} = {8,14}
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Solving agent i’s optimisation problem

• We can now apply Lagrange multipliers to the optimisation
problem solved by consumer i

max
c i

0,c
i
1,...,c

i
N

{
γ0 log

(
c i

0

)
+ γ1 log

(
c i

1

)
+ . . .+ γN log

(
c i

N

)}
s.t . :

∑
n∈{0,1,...,N}

pnc i
n =

∑
n∈{0,1,...,N}

pny i
n

• What is consumer i ’s optimum expenditure on the
consumption of good n?
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Individual excess demand / supply schedules -
solution

• The desired expenditure on good n by consumer i is given
by

∀n ∈ {0, . . . ,N} : pnc i
n =

γn∑
m∈{0,1,...,N} γm

 ∑
m∈{0,1,...,N}

pmy i
m


• What determines whether agent i buys/sells good n in the market?

• How does the quantity consumed depend on the price of
good n?

• What is the intuition behind the formula above?
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Market clearing

• We have markets for N + 1 different goods types
n ∈ {0, . . . ,N}

• We have I agents, each of whom would like to consume c i
n

• To ensure markets are in equilibrium, what do we need to
impose?

• The corresponding market clearing conditions are

∀n ∈ {0,1, . . . ,N} :
∑
i∈I

c i
n =

∑
i∈I

y i
n = yn

• How can we use this condition to solve for equilibrium goods prices
p1, p2, . . . , pn?
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Equilibrium prices

• Solution: letting Qn ≡ pn/p0 and defining the aggregate
endowment of good n as yn ≡

∑
i∈I y i

n we can show

∀n > 0 : Qn =
γny0

γ0yn

• The price we’re dividing by (i.e. p0) is called the numeraire
• Why do we need to divide by p0 instead of simply solving for it?

• Relative prices are pinned down by a combination of
aggregate endowments y and the (common) preference
parameters γn

• What is the economic intuition?
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Link to dynamic stochastic (general equilibrium)
models

• Why should we care about static deterministic models?
• Famous insight of Arrow (1964) and Debreu (1959): uncertainty and time

can easily be incorporated in the previous framework!

• Specifically, we can re-interpret our model as one with
• Two periods (for simplicity; no actual constraint on the number)
• N possible future outcomes / states next period {1, 2, . . . ,N}
• One type of consumption good (again, only for simplicity)

c i
0 = consumption of agent i in the initial period

c i
n = consumption of agent i in state n ∈ {1, . . . ,N} in period 2

• We can also set the utility weights γn equal to (why?)

γ0 = 1 γn = βπn

• We shall call β the discount factor, and πn will denote the probability of
state n occurring
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A DSGE model

• Agent i ′s optimisation problem then becomes

max
c i

0,c
i
1,...,c

i
n

log
(

c i
0

)
+ β

∑
n∈{1,...,N}

πn log
(

c i
n

)
s.t . : c i

0 +
∑

n∈{1,...,N}

Qnc i
n = y i

0 +
∑

n∈{1,...,N}

Qny i
n

• What is the sum in the optimised expression equal to?
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Arrow securities

• Defining ai
n ≡ c i

n − y i
n the constraint can be rewritten as

c i
0 +

∑
n∈{1,...,N}

Qnai
n = y i

0

• Since y i
n are fixed, choosing c i

n is equivalent to choosing ai
n

• Can think of the agent as choosing c i
0 and holdings of

assets ai
n paying a unit of consumption only in state n (next

period)
• These assets are known as Arrow securities and their prices are denoted

by Qn. What is the unit of account?
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Asset market completeness

• Asset market completeness implies no difference between
• a dynamic stochastic model
• a static model in which consumption at all possible future dates / states is

chosen in the initial period

• But what does it imply about the number of Arrow
securities?

• Would you consider this to be a strong assumption?

• In summary, and as noted by Townsend (1979) (and many
others), the insights of Arrow (1964) and Debreu (1959)
are double-edged!

• It seems there are few contingent dealings among agents relative to those
suggested by the theory!

• We will stick to the complete markets assumption
• Financial frictions consitute a popular deviation
• Covered in more detail later in the course!
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Solving the dynamic stochastic problem

• How can we quickly solve the two-period DSGE model?
• Optimal consumption levels are given by

c i
0 =

1
1 + β

y i
0 +

∑
m∈{1,...,N}

Qmy i
m


c i

n =
βπn/Qn

1 + β

y i
0 +

∑
m∈{1,...,N}

Qmy i
m


with Arrow security prices equal to

∀n > 0 : Qn = βπn
y0

yn

• To back out equilibrium security prices Qn we need the
aggregate endowments yi , discount factor β and state
probabilities πi
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Solving the dynamic stochastic problem

• We have just solved a heterogenous agent DSGE model!
• Can we say with certainty how much agent i will consume in the final

period?
• Can we say with certainty how much agent i will consume in state n in the

final period?

• The solution is a conditional consumption plan for each
agent i

• Plan is time-consistent and expectations are rational!
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Heterogeneous vs representative agent models

• We could also consider the following representative agent
model

max
c0,a1,...,an

{
log (c0) + β

∑
n>0

πn log (cn)

}
s.t . : c0 +

∑
n∈{1,...,N}

Qnan = y0

• Note that i has vanished, we have one agent only!

• What is the solution for ci? What is the implication for ai?
• The previous formulae for asset prices still apply, i.e.

∀n > 0 : Qn = βπn
y0

yn

• How are asset prices Qn different in the representative
agent model from the heterogenous agent one?
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Notes on equivalence

• If all we’re interested is aggregate prices then we can use
the representative agent model...

• We can think of there being a heterogenous agent economy in the
background in which Arrow securities are actively traded

• Conditions under which the equivalence result holds were
studied by Terence Gorman (Econometrica, 53)

• Issue: the individual endowment distribution y i
n should not matter for

equilibrium prices
• Idea: come up with conditions which guarantee that all agents, irrespective

of wealth, chose the same bundle of goods
• Necessary and sufficient condition: individual preferences admit

Gorman-form indirect utility

• Assumption is satisfied by CRRA utility functions
• log preferences are OK, but many other ones are not!
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The consumption Euler equation

• We have previously shown that the price of the n’th Arrow
security equals

∀n ∈ {1, . . . ,N} : Qn = βπn
y0

yn

• How could you use this formula to determine the price of
an asset which pays a unit of consumption with certainty in
the final period?

• Such an asset is known as a riskless real bond and its price equals Q
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The consumption Euler equation

• Letting E0 be the expectation operator, we have

Q =
∑

m∈{1,...,N}

Qm =
∑

m∈{1,...,N}

βπm
y0

ym
= βy0E0

1
yt=1

• These derivations were for log utility where u′ (c) = 1/c;
using market clearing (y = c) the general expression for Q
is

Q = βy0E0
1

yt=1
= βE0

u′ (ct=1)

u′ (c0)

• This is the consumption Euler equation
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The consumption Euler equation: intuition

• Define the net real interest rate r as

1 + r ≡ 1
Q

• The consumption Euler equation can then be rewritten as

u′ (c0) = βE0u′ (ct=1) (1 + r)

• The ‘utility’ cost of a marginal increase in saving: u′(c0)
• The expected benefit: βE0u′ (ct=1) (1 + r)

• What do higher real interest rates r ↑ imply for current (c0)
and future (ct=1) consumption?

• Higher real interest rates are thus contractionary
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The Euler equation: link to monetary models

• In models with inflation, the Fisher parity (an identity linking
real and nominal interest rates and inflation)

1 + r ≡ 1 + i
1 + πt=1

can be plugged into the consumption Euler equation,
yielding

u′(c0) = βE0u′(ct=1)
1 + i

1 + πt=1

• By the exact same mechanism as previously, higher
expected inflation ceteris paribus results in higher
consumption today and lower future consumption!

• Importantly, increases in the nominal interest rate i would
lead to lower consumption today, in line with the standard
interest rate channel of monetary policy transmission

• Caveat: expected inflation could respond to changes in i
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DSGE models: Summary

• We started by solving a heterogenous-agent, static,
deterministic, general equilibrium model

• We showed that when asset markets are complete, the
setup can easily be made dynamic (i.e. account for many
periods) and stochastic (i.e. account for uncertainty)

• However, the assumption of complete markets seems counterfactual!

• We looked at what can be inferred about (expected) utility
from axioms on choice / revealed preferences
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DSGE models: Summary (ctd)

• We also showed that under Gorman-form utility functions
our heterogenous agent model will display exactly the
same asset price dynamics as a representative agent
model

• Using a representative agent model does not imply loss of generality =⇒
heterogeneity may not matter for some questions!

• Finally, we also derived the the Euler equation

u′ (c0) = βE0u′ (ct=1) (1 + r)

• This suggests a link between marginal utility and the real interest rate

• We’ll shortly analyse this simple DSGE model
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